Microbiological contamination is a big challenge to the food industry, medicine, agriculture, and environmental protection. For this reason, scientists are constantly looking for alternative methods of decontamination, which ensure the effective elimination of unwanted biological agents. Cold plasma is a new technology, which due to its unique physical and chemical properties becomes a point of interest to a growing group of researchers. The previously conducted experiments confirm its effective action, e.g. in the disinfection of skin wounds, air, and sewage treatment, as well as in food preservation and decontamination. The reactive compounds present in the plasma: high-energy electrons, ionized atoms and molecules, and UV photons are the key factors that cause an effective reduction in the number of microorganisms. The mechanism and effectiveness of the cold plasma are complex and depend on the process parameters, environmental factors and the type and properties of the microorganisms that are to be killed. This review describes the current state of knowledge regarding the effectiveness of the cold plasma and characterizes its interaction with various groups of microorganisms based on the available literature data.
Microbiological contamination is a big challenge to the food industry, medicine, agriculture, and environmental protection. For this reason, scientists are constantly looking for alternative methods of decontamination, which ensure the effective elimination of unwanted biological agents. Cold plasma is a new technology, which due to its unique physical and chemical properties becomes a point of interest to a growing group of researchers. The previously conducted experiments confirm its effective action, e.g. in the disinfection of skin wounds, air, and sewage treatment, as well as in food preservation and decontamination. The reactive compounds present in the plasma: high-energy electrons, ionized atoms and molecules, and UV photons are the key factors that cause an effective reduction in the number of microorganisms. The mechanism and effectiveness of the cold plasma are complex and depend on the process parameters, environmental factors and the type and properties of the microorganisms that are to be killed. This review describes the current state of knowledge regarding the effectiveness of the cold plasma and characterizes its interaction with various groups of microorganisms based on the available literature data.
The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.