Specific Gravity $\langle 841\rangle$: about 1.1.
Acetylcholine Chloride (Trimethylethanaminium Chloride; Acecoline), $\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{Cl}-181.66$
[60-31-1]-White, crystalline powder. Very deliquescent; very soluble in water; freely soluble in alcohol.
Melting Range <741): When previously dried at 110° in a capillary tube for 1 hour, it melts between 149° and 152°.
REACTION: A solution (1 in 10) is neutral to litmus.
RESIDUE ON IGNITION (Reagent test): negligible, from 200 mg .
Solubility in Alcohol: A solution of 500 mg in 5 mL of alcohol is complete and colorless.
Percent of Acetyl ($\mathrm{CH}_{3} \mathrm{CO}$): Weigh accurately about 400 mg , previously dried at 105° for 3 hours, and dissolve in 15 mL of water in a glass-stoppered conical flask. Add 40.0 mL of 0.1 N sodium hydroxide VS, and heat on a steam bath for 30 minutes. Insert the stopper, allow to cool, add phenolphthalein TS, and titrate the excess alkali with 0.1 N sulfuric acid VS. Determine the exact normality of the 0.1 N sodium hydroxide by titrating 40.0 mL after it has been treated in the same manner as in the test. Each mL of 0.1 N sodium hydroxide is equivalent to 4.305 mg of $\mathrm{CH}_{3} \mathrm{CO}$. Between 23.2% and 24.2% is found.
Percent of Chlorine (Cl): Weigh accurately about 400 mg , previously dried at 105° for 3 hours, and dissolve in 50 mL of water in a glass-stoppered, $125-\mathrm{mL}$ flask. Add with agitation 30.0 mL of 0.1 N silver nitrate VS, then add 5 mL of nitric acid and 5 mL of nitrobenzene, shake, add 2 mL of ferric ammonium sulfate TS , and titrate the excess silver nitrate with 0.1 N ammonium thiocyanate VS: each mL of 0.1 N silver nitrate is equivalent to 3.545 mg of Cl . Between 19.3% and 19.8% of Cl is found.

3-Acetylthio-2-methylpropanoic Acid, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}$ - 162.21Use a suitable grade.
(NOTE-A suitable grade is available as β-(Acetylmercapto)isobutyric Acid, catalog number 39059, from Senn Chemicals AG www.sennchem.com.]

N-Acetyl-L-tyrosine Ethyl Ester, $\mathrm{C}_{13} \mathrm{H}_{1}{ }_{7} \mathrm{NO}_{4}$-251.28-Determine the suitability of the material as directed in the Assay under Chymotrypsin (USP monograph).

Acrylic Acid (2-Propenoic Acid; Vinylformic Acid), $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$ 72.06 [79-10-7]-Colorless liquid. Miscible with water, with alcohol, and with ether.
Assay: Inject an appropriate specimen into a gas chromatograph (see Chromatography $\langle 621\rangle$), equipped with a flame-ionization detector, helium being used as the carrier gas. The following conditions have been found suitable: a $0.25-\mathrm{mm} \times 30-\mathrm{m}$ capillary column coated with a $1-\mu \mathrm{m}$ layer of phase G2; the injection port temperature is maintained at 150°; the detector temperature is maintained at 300°, and the column temperature is maintained at 50° and programmed to rise 10° per minute to 200°. The area of the $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$ peak is not less than 99% of the total peak area.
ReFRACTIVE InDEX 〈831): between 1.419° and 1.423° at 20°.

Activated Alumina-See Alumina, Activated.
Activated Charcoal-See Charcoal, Activated.
Activated Magnesium Silicate-See Magnesium Silicate, Activated.

Adamantane, $\mathrm{C}_{10} \mathrm{H}_{16}-136.23$ [281-23-2]
Melting Range $\langle 741\rangle$: between 270° and 271°.
Adenine Sulfate, $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}-404.36$-White crystals or crystalline powder. Melts, after drying at 110°, at about 200° with some decomposition. One g dissolves in
about 160 mL of water; less soluble in alcohol. Soluble in solutions of sodium hydroxide. It is not precipitated from solution by iodine TS or mercuric-potassium iodide TS, but a precipitate is produced with trinitrophenol TS.
Residue on Ignition (Reagent test): negligible, from 100 mg .
Water: Dry it at 105° to constant weight: it loses not more than 10.0% of its weight.

Adipic Acid (Hexanedioic Acid; 1,4-Butanedicarboxylic Acid), $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}-146.14$ [124-04-9]-Colorless to white, crystalline powder. Slightly soluble in water and in cyclohexane; soluble in alcohol, in methanol, and in acetone; practically insoluble in benzene and in petroleum benzin.
Assay: Weigh accurately about 0.3 g , and dissolve in
50 mL of alcohol. Add 25 mL of water, mix, and titrate with 0.5 N sodium hydroxide VS to a pH of 9.5 . Perform a blank determination, and make any necessary correction. Each mL of 0.5 N sodium hydroxide is equivalent to 36.54 mg of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$. Not less than 98% is found. Melting Range <741): between 151° and 155°, but the range between beginning and end of melting does not exceed 2°.

Agar-Use Agar (NF monograph). When used for bacteriological purposes, it is to be dried to a water content of not more than 20%.

Agarose [9012-36-6]-Polysaccharide consisting of 1,3linked β-D-galactopyranose and 1,4-linked 3,6-anhydro- α-Lgalactopyranose. Use a suitable grade.

Air-Helium Certified Standard-A mixture of 1.0\% air in industrial grade helium. It is available from most suppliers of specialty gases.

Albumin Bovine Serum [9048-46-8]-Almost colorless to faintly yellow powder. Not less than 95\% pure. Solubility, 40 mg in 1 mL of water. Molecular weight is approximately 66,000 . Use a suitable grade. Store between 2° and 8°

Alcohol, Ethanol, Ethyl Alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-46.07$
[64-17-5]-Use a suitable grade with a content of NLT 92.3\% and NMT 93.8\%, by weight, corresponding to NLT 94.9% and NMT 96% by volume, at 15.56°.

Alcohol, 70 Percent, 80 Percent, and 90 Percent-Prepare by mixing alcohol and water in the proportions given, the measurements being made at 25°.

		Relative Proportions		
Percent by Volume of $\mathbf{C}_{2} \mathbf{H}_{\mathbf{5}} \mathbf{O H}$ at $\mathbf{1 5 . 5 6}$	Specific Gravity at $\mathbf{2 5}$	Alcohol, $\mathbf{m L}$	Water, $\mathbf{m L}$,	Volume in $\mathbf{m L}$ of Alcohol, Required for $\mathbf{1 0 0} \mathbf{~ m L}$
70	0.884	38.6	15	73.7
80	0.857	45.5	9.5	84.3
90	0.827	51	3	94.8

The proportions of alcohol and water taken to prepare these or any other percentage (v / v) solutions may be determined as follows. Calculate the amount, in mL , of water to be mixed with 100 mL of alcohol taken by the formula:

$$
[94.9(\mathrm{~d} / \mathrm{c})-0.8096] 100
$$

in which 94.9 is the percentage $(\mathrm{v} / \mathrm{v})$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in alcohol, 0.8096 is the specific gravity of 94.9% alcohol, d is the specific gravity, obtained from the Alcoholometric Table (see Reference Tables), of the solution containing $\mathrm{c} \%(\mathrm{v} / \mathrm{v})$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and 100 is the volume, in mL , of alcohol taken.

