Impurity Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Cyclopropyldiami- nopurine abacavir ^a	0.57	1.4	0.3	
Descyclopropyl aba- cavir ^b	0.68	1.0	0.8	
Abacavir	1.00			
<i>trans</i> -Abacavir ^c	1.04	1.0	,	
Any individual un- specified impurity	<u></u>	1.0	0.2	

^a N⁶-Cyclopropyl-9H-purine-2,6-diamine.

^b [(1*S*,4*R*)-4-(2,6-Diamino-9*H*-purin-9-yl)cyclopent-2-enyl]methanol.

^c {(1*R,4R*)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-cyclopent-2enyl}methanol. It is a process impurity and monitored in the drug sub-

Standard solution: 0.21 mg/mL of abacavir sulfate in Diluent (equivalent to 0.18 mg/mL of abacavir), from USP Abacavir Sulfate RS Sample stock solution: Transfer the equivalent to 1500 mg of abacavir, from a portion of Tablets, into a 250-mL volumetric flask. Add 150 mL of Diluent. Shake mechanically for 45 min. Dilute with Diluent to volume. Pass a portion through a suitable filter of 0.45-µm or finer pore size. Discard the first 3 mL of the filtrate. Sample solution: 0.18 mg/mL of abacavir in *Diluent* using the filtrate obtained in the Sample stock solution Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 254 nm Column: 3.9-mm × 15-cm; packing L1 Flow rate: 0.8 mL/min

USP 41

stance.

SPECIFIC TESTS

- MICROBIAL ENUMERATION TESTS (61) and TESTS FOR SPECI-FIED MICROORGANISMS (62): The total aerobic microbial count does not exceed 100 cfu/mL, and the total combined molds and yeast count does not exceed 10 cfu/ mL. It also meets the requirement for absence of Escherichia coli.
- PH (791): 3.8-4.5

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in well-closed containers. Store at controlled room temperature.
- USP Reference Standards $\langle 11 \rangle$
 - USP Abacavir Sulfate RS
 - USP Abacavir System Suitability Mixture RS A mixture containing abacavir sulfate and *trans*-abacavir

Abacavir Tablets

DEFINITION

- Injection volume: $10 \,\mu$ L
- System suitability
 - Samples: System suitability solution and Standard solution
 - Suitability requirements
 - Resolution: NLT 1.5 between abacavir and trans-abacavir, System suitability solution
 - Relative standard deviation: NMT 2.0%, Standard solution

Analysis

rs

 A_U

 A_{S}

Cs

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of abacavir (C₁₄H₁₈N₆O) in the portion of Tablets taken:

 $\text{Result} = (r_{\upsilon}/r_s) \times (C_s/C_{\upsilon}) \times (M_{r_1}/M_{r_2}) \times 100$

- r_{U} = peak response of abacavir from the Sample solution
 - = peak response of abacavir from the Standard solution
- C_s = concentration of abacavir sulfate in the Standard solution (mg/mL)
- C_U = nominal concentration of abacavir in the Sample solution (mg/mL)
- M_{r1} = molecular weight of abacavir multiplied by 2, 572.66 M_{r2} = molecular weight of abacavir sulfate, 670.74 Acceptance criteria: 90.0%–110.0%

Abacavir Tablets contain Abacavir Sulfate equivalent to NLT 9.0.0% and NMT 110.0% of the labeled amount of abacavir (C14H18N6O).

IDENTIFICATION

• A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Diluent: 1.0 mL of phosphoric acid in 1 L of water Solution A: Trifluoroacetic acid and water (0.05: 99.95) Solution B: Methanol and water (85:15) Mobile phase: See *Table 1*.

Time (min)	Solution A (%)	Solution B (%)		
0	95	5		
20	70	30		
35	10	90		
40	10	90		
41	95	5		
50	95	5		

Table	haran a
-------	---------

PERFORMANCE TESTS

 Dissolution (711) Medium: 0.1 N hydrochloric acid; 900 mL Apparatus 2: 75 rpm Time: 15 min Standard solution: 0.39 mg/mL of USP Abacavir Sulfate RS in *Medium* Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size. Instrumental conditions Mode: UV Analytical wavelength: 254 nm Blank: *Medium* Calculate the percentage of the labeled amount of abacavir (C₁₄H₁₈N₆O) dissolved:

 $\text{Result} = (A_U/A_S) \times (C_S/L) \times (M_{r1}/M_{r2}) \times V \times 100$

- = absorbance of the Sample solution
- = absorbance of the Standard solution = concentration of the Standard solution (mg/mL)

System suitability solution: 0.2 mg/mL of USP Abacavir System Suitability Mixture RS in *Diluent*

- = label claim (mg/Tablet)
- M_{r1} = molecular weight of abacavir multiplied by 2, 572.66
- M_{r2} = molecular weight of abacavir sulfate, 670.74
 - = volume of *Medium*, 900 mL
- **Tolerances:** NLT 80% (Q) of the labeled amount of abacavir (C₁₄H₁₈N₆O) is dissolved.