
28 Acarbose / Official Monographs

Acarbose

C₂₅H₄₃NO₁₈ D-Glucose, O-4,6-dideoxy-4-[[[1*S*-(1α,4α,5β,6α)]-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino]-α-Dglucopyranosyl-(1→4)-O-α-D-glucopyranosyl-(1→4)-; O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino}-α-D-glucopyranosyl-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucose [56180-94-0]. C_u = concentration of the Sample solution (mg/mL) Acceptance criteria: 95.0%–102.0% on the anhydrous basis

IMPURITIES

 RESIDUE ON IGNITION (281) Sample: 1.0 g Acceptance criteria: NMT 0.2%

Delete the following:

• HEAVY METALS, Method II (231): NMT 20 ppm • (Official 1-Jan-2018)

• Chromatographic Purity

Mobile phase, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay. Diluted sample solution: Dilute 1.0 mL of the Sample solution with water to 100.0 mL.

USP 41

DEFINITION

Acarbose is produced by certain strains of *Actinoplanes utahensis*. It contains NLT 95.0% and NMT 102.0% of acarbose (C₂₅H₄₃NO₁₈), calculated on the anhydrous basis.

IDENTIFICATION

- A. Infrared Absorption (197K)
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

- PROCEDURE
 - Solution A: 0.6 mg/mL of monobasic potassium phosphate and 0.35 mg/mL of dibasic sodium phosphate in water
 - Mobile phase: Acetonitrile and Solution A (3:1)
 - System suitability solution: 20 mg/mL of USP Acarbose System Suitability Mixture RS in water
 - Standard solution: 20 mg/mL of USP Acarbose RS in water
 - Sample solution: 20 mg/mL of Acarbose in water

Analysis

Samples: Sample solution and Diluted sample solution Calculate the percentage of each impurity in the portion of Acarbose taken:

Result = $(r_U/r_A) \times (1/F) \times 100$

- *r*_U = peak response of each impurity from the *Sample solution*
- *r_A* = peak response of the main acarbose peak from
 the *Diluted sample solution F* = relative response factor for each impurity (see
 - = relative response factor for each impurity (see Table 1)

Acceptance criteria: See Table 1.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Impurity A ^a	0.9]	0.6
Impurity B ^b	0.8	1.6	0.5
Impurity C ^c	1.2	1	1.5
Impurity D ^d	0.5	1.33	1.0
Impurity E ^e	1.7	0.8	0.2
Impurity F ^f	1.9	0.8	0.3
Impurity G ⁹	2.2	0.8	0.3
Impurity H ^h	0.6	1	0.2

Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 210 nm Column: 4-mm × 25-cm; packing L8 Column temperature: 35° Flow rate: 2 mL/min Injection volume: 10 μL

ngecuun vonume. Tu Svetom suitability

System suitability

Sample: System suitability solution

Identify the acarbose peak and the peaks due to the impurities listed in *Table 1*.

Suitability requirements

Peak-to-valley ratio: The ratio of the height of the impurity A peak to the height of the valley between the impurity A peak and the acarbose peak is NLT 1.2.

Chromatogram comparability: The chromatogram obtained is similar to the chromatogram provided with USP Acarbose System Suitability Mixture RS for the known impurities found.

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of acarbose (C₂₅H₄₃NO₁₈) in the portion of Acarbose taken: ^a O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-O- α -Dglucopyranosyl-(1 \rightarrow 4)-D-arabino-hex-2-ulopyranose.

^b (1*R*,4*R*,5*S*,6*R*)-4,5,6-Trihydroxy-2-(hydroxymethyl)cyclohex-2-enyl 4-O-[4, 6-dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl]-α-D-glucopyranoside.

^c α-D-Glucopyranosyl 4-O-[4,6-dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl]-α-Dglucopyranoside.

^d 4-O-[4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl]-D-glucopyranose. ^e O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl-(1→4)-O-α-Dglucopyranosyl-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-arabino-hex-2ulopyranose (4-O-α-acarbosyl-D-fructopyranose).

^f O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl-(1→4)-O-α-Dglucopyranosyl-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose (4-Oα-acarbosyl-D-glucopyranose). ^g α-D-Glucopyranosyl O-4,6-dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl-(1→4)-O-α-Dglucopyranosyl-(1→4)-O-α-D-glucopyranoside (α-D-glucopyranosyl αacarboside).

Result = $(r_U/r_s) \times (C_s/C_U) \times 100$

r_u rs Cs = peak response from the Sample solution
 = peak response from the Standard solution
 = concentration of USP Acarbose RS in the Standard solution (mg/mL) ^h O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl-(1→4)-O-6-deoxy-α-D-glucopyranosyl-(1→4)-D-glucopyranose.