Official Monographs / Acebutolol 29

Table 1 (Continued)			
Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Any individual unknown im- purity			0.2
Total impuri- ties			3.0

^a O-4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-O- α -Dglucopyranosyl- $(1 \rightarrow 4)$ -D-arabino-hex-2-ulopyranose.

^b (1*R*,4*R*,5*S*,6*R*)-4,5,6-Trihydroxy-2-(hydroxymethyl)cyclohex-2-enyl 4-O-[4, 6-dideoxy-4-{[(1\$,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cýclohex-2envl]amino}- α -D-glucopyranosyl]- α -D-glucopyranoside.

^c α-D-Glucopyranosyl 4-O-[4,6-dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-

IDENTIFICATION

- A. INFRARED ABSORPTION (197K)
- **B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

Change to read:

• C. IDENTIFICATION TESTS—GENERAL (191), Chloride: Meets the requirements of tests A and Bo (CN 1-May 2018)

ASSAY

• PROCEDURE

Mobile phase: Methanol, glacial acetic acid, and 0.3% aqueous solution of sodium dodecyl sulfate (675:20:325). Make adjustments if necessary to achieve

3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl]- α -Dglucopyranoside.

^d 4-O-[4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl]-D-glucopyranose. ^e O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-O- α -Dglucopyranosyl- $(1 \rightarrow 4)$ -O- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -D-arabino-hex-2ulopyranose (4- \dot{O} - α -acarbosyl-D-fructopyranose).

^f O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-O- α -Dglucopyranosyl- $(1 \rightarrow 4)$ -O- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -D-glucopyranose (4-O- α -acarbosyl-D-glucopyranose).

^gα-D-Glucopyranosyl O-4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-O- α -Dglucopyranosyl-(1 \rightarrow 4)-O- α -D-glucopyranoside (α -D-glucopyranosyl α acarboside).

^h O-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1- \rightarrow 4)-O-6-deoxy- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -D-glucopyranose.

SPECIFIC TESTS

• OPTICAL ROTATION, Specific Rotation (781S) Sample solution: 10 mg/mL in water Acceptance criteria: $+168^{\circ}$ to $+183^{\circ}$

• PH (791)

Sample solution: 50 mg/mL

Acceptance criteria: 5.5–7.5

• WATER DETERMINATION, Method Ic (921): NMT 4.0%

a retention time for acebutolol of between 4 and 7 min. Standard solution: 0.14 mg/mL of USP Acebutolol Hydrochloride RS in water Sample solution: 0.14 mg/mL of Acebutolol Hydrochloride in water Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 254 nm **Column:** 3.9-mm × 30-cm; packing L1 Flow rate: 2 mL/min Injection volume: 10 µL System suitability Sample: Standard solution Suitability requirements Column efficiency: NLT 1500 theoretical plates Tailing factor: NMT 2.5 Relative standard deviation: 0.73% Analysis Samples: Standard solution and Sample solution Calculate the percentage of acebutolol hydrochloride $(C_{18}H_{28}N_2O_4 \cdot HCI)$ in the portion of Acebutolol Hydrochloride taken:

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers.
- USP Reference Standards (11)
 - USP Acarbose RS
 - USP Acarbose System Suitability Mixture RS

Acebutolol Hydrochloride

 $C_{18}H_{28}N_2O_4 \cdot HCI$ 372.89 Butanamide, N-[3-acetyl-4-[2-hydroxy-3-[(1-methylethyl)ami-no]propoxy]phenyl]-, monohydrochloride, (±)-; (±)-3'-Acetyl-4'-[2-hydroxy-3-(isopropylamino)propoxy]butyranilide monohydrochloride [34381-68-5].

- = peak response of acebutolol from the Sample r_U solution
- = peak response of acebutolol from the Standard rs solution
- C_{S} = concentration of USP Acebutolo Hydrochloride RS in the Standard solution (mq/mL)
- = concentration of Acebutolol Hydrochloride in C_U the Sample solution (mg/mL)

Acceptance critería: 98.0%-102.0% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

Delete the following:

- HEAVY METALS, Method II (231): NMT 20 ppme (Official 1-Jan-2018)
- ORGANIC IMPURITIES
 - Solution A: Mix 2.0 mL of phosphoric acid and 3.0 mL

DEFINITION

Acebutolol Hydrochloride contains NLT 98.0% and NMT 102.0% of acebutolol hydrochloride (C₁₈H₂₈N₂O₄ · HCl), calculated on the dried basis.

of triethylamine, and dilute with water to 1 L. **Solution B:** Acetonitrile and Solution A (1:1) Standard stock solution 1: 0.2 mg/mL of USP Acebutolol Related Compound A RS prepared as follows. Dissolve a suitable amount of USP Acebutolol Related Compound A RS in a suitable volumetric flask, in 50% of the total volume of acetonitrile, and dilute with Solution A to volume.

Standard stock solution 2: 0.2 mg/mL of USP Acebutolol Related Compound B RS prepared as follows. Dissolve a suitable amount of USP Acebutolol Re-